$\qquad$
$\qquad$

## Data 88S

April 19, 2024

1. Consider the following function $f$ on the domain $[0,1]$ :

$$
f(x)= \begin{cases}a & x \leq \frac{2}{3}  \tag{1}\\ \frac{1}{x^{2}} & x>\frac{2}{3}\end{cases}
$$

Find the value of a that makes this function a valid probability density function over $[0,1]$.
2. Suppose $X_{1}, X_{2}, X_{3}$ are i.i.d. uniform over [0, 1]. Let $\mathrm{Y}=\max \left(X_{1}, X_{2}, X_{3}\right)$.
(a) Find the probability density function of Y
(b) Find $P\left(Y<\frac{1}{3}\right)$
(c) Find $P\left(Y \geq \frac{1}{2}\right)$
(d) Find $E[Y]$
$\qquad$
$\qquad$

## Chapter 10, Exercise 1

3. Let $X_{1}, X_{2}, X_{3}, \ldots$ be i.i.d. with density given by

$$
f(x)= \begin{cases}0 & x \leq 50  \tag{2}\\ \frac{c}{x^{4}} & x>50\end{cases}
$$

This is one of the Pareto densities, sometimes used in economics to represent distributions of wealth in populations where a small percent of the population owns a large percent of the wealth.
(a) Find $c$.
(b) Find the cdf of $X_{1}$ and sketch its graph.
(c) Find $E\left(X_{1}\right)$.
(d) Find $\operatorname{Var}\left(X_{1}\right)$.

## Chapter 10, Exercise 2

4. A class starts at $3: 10 \mathrm{p} . \mathrm{m}$. Seven students in the class arrive at random times $T_{1}, T_{2}, \ldots, T_{7}$ that are i.i.d. with the uniform distribution on the interval 3:07 to 3:12.
(a) Find $E\left(T_{1}\right)$
(b) What is the chance that all seven students arrive before 3:10?
(c) Let $X=\max \left(T_{1}, T_{2}, \ldots, T_{7}\right)$ be the time when the last of the seven students arrives. Find the cdf of $X$.
