\qquad
\qquad

Data 88S

April 5, 2024

Law of Averages

1. A fair coin is tossed repeatedly. For each win condition, which number of tosses gives you a higher chance of winning: 10 tosses or 100 tosses?
In each of parts below, pick one of the two options without calculation and explain your choice.
(a) You win a prize if there are at least 60% heads.
(b) You win a prize if there are at least 40% heads.
(c) You win a prize if there are between 40% and 60% heads, inclusive.
(d) You win a prize if there are exactly 50% heads.

Weak Law of Large Numbers

2. (a) City A has a population of 4 million, and City B has a population of 400,000 . In City A, 60,000 people hold degrees in statistics (1.5% of the population), and in City B, 80,000 people hold degrees in statistics (20% of the population). Anton, a surveyor in City A, selects a simple random sample of 2,000 people from the city. Borong, a surveyor in City B, selects a random sample with replacement, also of 2,000 people from their city, independent of Anton's sample. Let X_{A} be the number of people in Anton's sample who hold degrees in statistics, and X_{B} be the number of people in Borong's sample with degrees in statistics. Find $E\left(X_{A}+10 X_{B}\right)$ and $\operatorname{Var}\left(X_{A}+10 X_{B}\right)$.
(b) The Bureau of Statistics in City A has just now received millions of dollars in an unexpected donation! Anton now has the budget to draw another $n-1$ simple random samples from the population of City A and all of the samples are independent of one another. Let A_{n} denote the average number of people in Anton's n samples with degrees in statistics. What does the Weak Law of Large numbers imply? Select all that apply.
i. $P\left(\left|A_{n}-E\left(A_{n}\right)\right|<c\right) \rightarrow 1$ as $n \rightarrow \infty$, for any fixed $c>0$.
ii. $P\left(\left|A_{n}-E\left(A_{n}\right)\right|<c\right) \rightarrow 0$ as $n \rightarrow \infty$, for any fixed $c>0$.
iii. $P\left(\left|A_{n}-E\left(A_{n}\right)\right|>c\right) \rightarrow 0$ as $n \rightarrow \infty$, for any fixed $c>0$.
iv. $P\left(A_{n} \in\left[E\left(A_{n}\right)-c, E\left(A_{N}\right)+c\right]\right) \rightarrow 1$ as $n \rightarrow \infty$, for any fixed $c>0$.

CLT Exploration

3. go to https://tinyurl.com/88sdemo and use the notebook to simulate the distribution of a sample sum.
