Stat 88: Probability and Mathematical Statistics in Data Science


Lecture 4: 1/24/2024
Bounds, Axioms, Intersections
Sections 1.2, 1.3, 2.1

## Warm up (hint: draw Venn diagrams)

If we have events $A$ and $B$ such that $P(A)=0.7$ and $P(B)=0.5$, 1) Can $A$ and $B$ be mutually exclusive?
2) What can you say about $P(A \cup B)$ ?
3) What can you say about $P(A \cap B)$ ?

## Agenda

- Bounds on intersections and unions of events
- Axioms of probability
- De Morgan's laws (exercise)
- The multiplication rule
- Generalized Addition rule
- Inclusion Exclusion


## Back to warm up problem, now with some context.

Let $A$ be the event that you catch the bus to class instead of walking, $P(A)=70 \%$ and let $B$ be the event that it rains, $P(B)=50 \%$

What is the chance of at least one of these two events happening?

What is the chance of both of them happening?

## Exercise: De Morgan's Laws

Exercise: Try to show these using Venn diagrams and shading:

1. $(A \cap B)^{c}=A^{c} \cup B^{c}$
2. $(A \cup B)^{c}=A^{c} \cap B^{c}$

## §1.3: Fundamental Rules

Also called "Axioms of probability", first laid out by Kolmogorov
Recall $\Omega$, the outcome space. Note that $\Omega$ can be finite or infinite.

First, some notation:
Events are denoted (usually) by $A, B, C \ldots$
Recall that $\Omega$ is itself an event (called the certain event) and so is the empty set (denoted $\varnothing$, and called the impossible event or the empty set)

The complement of an event $A$ is everything else in the outcome space (all the outcomes that are not in $A$ ). It is called "not $A$ ", or the complement of $A$, and denoted by $A^{c}$

## Rethinking the definition of $P(A)$

- So far, we have thought about the probability of an event $A$ as the proportion of the outcomes in $A$. That is, if the outcome space $\Omega$ has $n$ equally likely outcomes, each outcome will have probability $\frac{1}{n}$; and if the event $A$ has $k$ outcomes, then $P(A)=\frac{k}{n}$.
- Now we can rethink our definition to make it more general. We keep the idea of probability of an event $A$ describing the relative size of $A$, and we will generalize the properties of proportions that we have seen so far, and used.
- Let's think of probability as a numerical function on events, so the input into this function is an event $A$, and the output is $P(A)$, a number between 0 and 1 satisfying some natural axioms (rules).


## The Axioms of Probability

$P(A)$ is a number between 0 and 1 satisfying the axioms below.
Formally, let $A \subset \Omega$, then for every such $A$, we have a number $P(A)$ such that:

1. For every event $A \subseteq \Omega$, we have $P(A) \geq 0$
2. $P(\Omega)=1$ (the outcome space is certain)
3. Addition rule: If two events are mutually exclusive, then the probability of their union is the sum of their probabilities:

$$
A \cap B=\varnothing \Rightarrow P(A \cup B)=P(A)+P(B)
$$

The third axiom is actually more general and says: If we have infinitely many events that are mutually exclusive (no pair of them has an overlap- that is: $A_{i} \cap A_{j}=\varnothing$ for every pair $A_{i}, A_{j} ; i \neq j$ ), then the probability of their union is the sum of their probabilities.

## The Axioms of Probability

Let's restate them - they don't look like much, but the entire course is essentially studying the axioms and their consequences.

1. For every event $A \subseteq \Omega$, we have $P(A) \geq 0$
2. $P(\Omega)=1$
3. If events $A_{1}, A_{2}, A_{3} \ldots$ are mutually exclusive, then:
$P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$

- Now we can derive the complement rule from (2) and (3):


## Example of complements

Roll a die 3 times, let $A$ be the event that we roll an ace each time.
$A C=$ not $A$, or not all aces. It is not equal to "never an ace".


What about "not A"? Here is an example of an outcome in that set.


## Consequences of the axioms

1. Complement rule: $P\left(A^{c}\right)=1-P(A)$

What is the probability of not rolling a pair of sixes in a roll of a pair of dice?
2. Difference rule: If $B \subseteq A$, then $P(A \backslash B)=P(A)-P(B)$ where A $\backslash \mathrm{B}$ refers to the set difference between $A$ and $B$, that is, all the outcomes that are $A$ but not in $B$.

## Consequences of the axioms

3. Boole's (and Bonferroni's) inequality: generalization of the fact that the probability of the union of $A$ and $B$ is at most the sum of the probabilities.

We know that $P(A \cup B) \leq P(A)+P(B)$. We can extend this to unions of $n$ events:

For all events $A_{1}, A_{2}, A_{3}, \ldots, A_{n^{\prime}}$ we have:

$$
P\left(\bigcup_{i=0}^{n} A_{i}\right) \leq \sum_{i=0}^{n} P\left(A_{i}\right)
$$

## How do we solve problems like these:

- What is the probability that the top card in a standard 52 card deck is a queen and the bottom card is a queen?
- What is the probability that the top card in a standard 52 card deck is a queen or the bottom card is a queen?


## Probability of an intersection

- Say we have three colored balls in an urn (red, blue, green), and we draw two balls without replacement.
- Find the probability that the first ball is red, and the second is blue (Write down the outcome space and compute the probability)
- We can also write it down in sequence: $P($ first red, then blue $)=P($ first drawing a red ball) $\times \mathrm{P}($ second ball is blue, given 1 st was red)


## Multiplication rule

- Conditional probability written as $P(B \mid A)$, read as "the probability of the event $B$, given that the event $A$ has occurred"
- The probability that two things will both happen is the chance that the first happens, multiplied by the chance that the second will happen given that the first has happened.
- Let $A, B \subseteq \Omega, P(A)>0, P(B)>0$
- Multiplication rule:

$$
\begin{aligned}
& P(A \cap B)=P(A \mid B) \times P(B) \\
& P(A \cap B)=P(B \cap A)=P(B) \times P(A \mid B)
\end{aligned}
$$

## Multiplication rule

$$
P(A \cap B)=P(A \mid B) \times P(B)
$$

- Ex.: Draw a card at random, from a standard deck of 52
- $P($ King of hearts $)=$ ?
- Draw 2 cards one by one, without replacement.
- $\mathrm{P}\left(1^{\text {st }}\right.$ card is K of hearts $)=$
- $\mathrm{P}\left(2^{\text {nd }}\right.$ card is Q of hearts 1 st is K of hearts $)=$
- $P\left(1^{\text {st }}\right.$ card is $K$ of hearts $A N D 2^{\text {nd }}$ is $Q$ of hearts $)=$
- We can also write the "Division Rule" for conditional probability:

$$
P(A \mid B)=\frac{P(A B)}{P(B)}, P(B) \neq 0
$$

## Addition rule:

- Addition rule: If $A$ and $B$ are mutually exclusive events, then the probability that at least one of the events will occur is the sum of their probabilities:
$P(A \cup B)=P(A)+P(B)$
- If they are not mutually exclusive, does this still hold?
- How do we write the event that "at least one of the events $A$ or $B$ will occur? How do we draw it?


## Inclusion-Exclusion Formula (general addition rule)

- $P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A B)$
- $P(A \cup B \cup C)=P(A)+P(B)+P(C)$

$$
\begin{aligned}
& -P(A B)-P(A C)-P(B C) \\
& +\quad P(A B C)
\end{aligned}
$$

- (Draw a Venn diagram)
- Of course, if $A$ and $B$ (or $A$ and $B$ and $C$ ) don't intersect, then the general addition rule becomes the simple addition rule of

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B), \text { or } \\
P(A \cup B \cup C)=P(A)+P(B)+P(C)
\end{gathered}
$$

## Exercise:

- What is the probability that the top card in a standard 52 card deck is a queen and the bottom card is a queen?
- What is the probability that the top card in a standard 52 card deck is a queen or the bottom card is a queen?


## Examples

- Deal 5 cards from the top of a well shuffled deck. What is the probability that all are hearts? (Extend the multiplication rule)
- Deal 5 cards, what is the chance that they are all the same suit? (flush)


## Sec. 2.2: Symmetry in Simple Random Sampling

- One of the topics we will revisit many times is simple random sampling.
- Sampling without replacement, each time with equally likely probabilities
- Example to keep in mind: dealing cards from a deck
- Sampling with replacement: We keep putting the sampled outcomes back before sampling again. (Can do this to simulate die rolls.)
- Need to count number of possible outcomes from repeating an action such as sampling, will use the product rule of counting.


## Product rule of counting

- If a set of actions (call them $A_{1}, A_{2}, \ldots, A_{n}$ ) can result, respectively, in $k_{1}, k_{2}, \ldots, k_{n}$ possible outcomes, then the entire set of actions can result in:

$$
k_{1} \times k_{2} \times k_{3} \times \ldots \times k_{n} \text { possible outcomes }
$$

- For example: toss a coin twice. Each toss can have 2 possible outcomes, therefore 2 tosses can have 4 possible outcomes.
- So we can count the outcomes for each action and multiply these counts to get the number of possible sequences of outcomes.


## How many ways to arrange...

- Consider the box that contains O R A N G E:
- How many ways can we rearrange these letters?
- Now say we only want to choose 2 letters out of the six:


## Symmetries in cards

- Deal 2 cards from top of the deck.
- How many possible sequences of 2 cards?
- What is the chance that the second card is red?
- $P\left(5^{\text {th }}\right.$ card is red $)$
- $P\left(R_{21} \cap R_{35}\right)=$ (write it using conditional prob)
- $P\left(7^{\text {th }}\right.$ card is a queen $)$
- $P\left(B_{52} \mid R_{21} R_{35}\right)$

