Stat 88: Probability and Mathematical Statistics in Data Science

Lecture 4: 1/24/2024
Bounds, Axioms, Intersections
Sections 1.2, 1.3, 2.1

Warm up (hint: draw Venn diagrams)

If we have events A and B such that $P(A)=0.7$ and $P(B)=0.5$,

1) Can A and B be mutually exclusive?

If $A \& B$ were mutually exclnswe thew Ω

$$
P(A \cup B)=P(A)+P(B)=0.7+0.5=1.2 X
$$

2) What can you say about $P(A \cup B)$?

$$
\leq P(A \cup B) \leq 1
$$

3) What can you say about $P(A \cap B)$?

Extreme case 1
(either mutually exclusive or mini mally overlap)

Extreme case 2
maximal overlap. when our ob events is completely other rained

In example above $P(A)+P(B)=0.7+0.5=1.2$ so 0.2 is the excess above 1 , so $A \& B$ must have at least that muchoverlap.
Minimal overlap gores the biggest union.

$$
\begin{aligned}
& \Omega=\text { enturenaliphabet: } \#(\Omega)=26 \\
& A=\text { vowels }=\{a, e, i, 0, u\} \quad \#(A)=5 \\
& P(A)=\frac{5}{26} \quad \begin{array}{l}
D=\{i, 0, u\} \\
\quad P(A \cup D)=P(A) \\
=5 / 26
\end{array} \\
& B=\{c, r, a, z, y\} \quad P(B)=\frac{5}{26}=\frac{\#(B)}{\#(\Omega)}
\end{aligned}
$$

Are $A \& B$ mutually exclusive

$$
\begin{array}{ll}
A \cup B=\{a, e, c, 0, u, c, r, z, y\} \\
P(A \cup B)=\frac{9}{26} & A \cap C=\phi \\
C=\{d, f, g, h, r\} & A(\phi)=\frac{0}{26}=0 \\
P(A \cup C)=P(A)+P(C)=\frac{10}{26} & P\left(\begin{array}{l}
\text { Are }
\end{array}\right.
\end{array}
$$

Agenda

- Bounds on intersections and unions of events
- Axioms of probability
- De Morgan's laws (exercise)
- The multiplication rule
- Generalized Addition rule
- Inclusion Exclusion

Back to warm up problem, now with some context.
Let A be the event that you catch the bus to class instead of walking, $P(A)=70 \%$ and let B be the event that it rains, $P(B)=50 \%$
What is the chance of at least one of these two events happening? means union

$$
0.7 \leq P(A \cup B) \leq 1
$$

$$
0.7 \hookrightarrow
$$

What is the chance of both of them happening?

$$
\begin{aligned}
& P(A \cap B) \\
& 0.2 \leq P(A \cap B) \leq 0.5
\end{aligned}
$$

Exercise: De Morgan's Laws

Exercise: Try to show these using Venn diagrams and shading:

1. $(A \cap B)^{c}=A^{c} \cup B^{c}$ $\xrightarrow{ }$

$\pi(A \cap B)^{c}$
2. $(A \cup B)^{c}=A^{c} \cap B^{c}$

$(A \cup B)^{C}$

§1.3: Fundamental Rules

Also called "Axioms of probability", first laid out by Kolmogorov
Recall Ω, the outcome space. Note that Ω can be finite or infinite.

First, some notation:
Events are denoted (usually) by $A, B, C \ldots$
Recall that Ω is itself an event (called the certain event) and so is the empty set (denoted \varnothing, and called the impossible event or the empty set)

The complement of an event A is everything else in the outcome space (all the outcomes that are not in A). It is called "not A ", or the complement of A, and denoted by A^{c}

Rethinking the definition of $P(A)$

- So far, we have thought about the probability of an event A as the proportion of the outcomes in A. That is, if the outcome space Ω has n equally likely outcomes, each outcome will have probability $\frac{1}{n}$; and if the event A has k outcomes, then $P(A)=\frac{k}{n}$.
- Now we can rethink our definition to make it more general. We keep the idea of probability of an event A describing the relative size of A, and we will generalize the properties of proportions that we have seen so far, and used.
- Let's think of probability as a numerical function on events, so the input into this function is an event A, and the output is $P(A)$, a number between 0 and 1 satisfying some natural axioms (rules).

The Axioms of Probability

$P(A)$ is a number between 0 and 1 satisfying the axioms below.
Formally, let $A \subset \Omega$, then for every such A, we have a number $P(A)$ such that:

1. For every event $A \subseteq \Omega$, we have $P(A) \geq 0$,
2. $P(\Omega)=1$ (the outcome space is certain),
3. Addition rule: If two events are mutually exclusive, then the probability of their union is the sum of their probabilities:

$$
A \cap B=\varnothing \Rightarrow P(A \cup B)=P(A)+P(B)
$$

The third axiom is actually more general and says: If we have infinitely many events that are mutually exclusive (no pair of them has an overlap- that is: $A_{i} \cap A_{j}=\varnothing$ for every pair $A_{i}, A_{j} ; i \neq j$), then the probability of their union is the sum of their probabilities.

The Axioms of Probability
Let's restate them - they don't look like much, but the entire course is essentially studying the axioms and their consequences.

1. For every event $A \subseteq \Omega$, we have $P(A) \geq 0$
2. $P(\Omega)=1 \leftarrow$
3. If events $A_{1}, A_{2}, A_{3} \ldots$ are mutually exclusive, then:

$$
\begin{aligned}
& P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right) \quad \left\lvert\, \begin{array}{c}
A_{1}, A_{2}, \ldots A_{n}, \text { such that } A_{i} \cap A_{j} \\
P\left(y_{i}^{n}\right) \\
=\varnothing, i+
\end{array}\right. \\
& \begin{array}{l}
\sum_{i=1}^{n} P\left(A_{i}\right)=P\left(A_{1}\right)+P\left(A_{2}+P\left(A_{1}\right)+\right. \\
\cdots\left(A_{n}+{ }_{i=1}^{n}\right) \\
\text { Now we can derive the complement rule from (2) and (3): }
\end{array} \\
& \text { - Now we can derive the complement rule from (2) and (3): } \\
& \text { Consider } A, A^{C}
\end{aligned}
$$

know that $A \cup A^{c}=\Omega$

$$
\begin{aligned}
& \left.A \cup A^{C}\right)=1 \Rightarrow P(A)+P\left(A^{C}\right)=1 \\
& P\left(A^{C}\right)=1-P(A)^{\circ}
\end{aligned}
$$

Example of complements

Roll a die 3 times, let A be the event that we roll an ace each time.
$A C=\operatorname{not} A$, or not all aces. It is not equal to "never an ace".
$A=$

Exercise
If we roll a die trice
P(no@ ice oneitherroll)

What about "not A "? Here is an example of an outcome in that set.

$$
\bullet \bullet \quad P\left(A^{\prime}\right) \neq P(\text { never E } E)
$$

Consequences of the axioms

$1 \geqslant$ Complement rule: $P\left(A^{c}\right)=1-P(A)$
What is the probability of not rolling a pair of sixes in a roll of a pair of dice?
2. Difference rule: If $B \subseteq A$, then $P(A \backslash B)=P(A)-P(B)$ where $\mathrm{A} \backslash \mathrm{B}$ refers to the set difference between A and B, that is, all the outcomes that are A but not in B.

A setminns B

$\begin{aligned} & A \cap B \\ = & A \cap B^{C}\end{aligned}$

Consequences of the axioms

3. Boole's (and Bonferroni's) inequality: generalization of the fact that the probability of the union of A and B is at most the sum of the probabilities.

We know that $P(A \cup B) \leq P(A)+P(B)$. We can extend this to unions of n events:
For all events $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$, we have: we don't know

How do we solve problems like these:

- What is the probability that the top card in a standard 52 card deck is a queen and the bottom card is a queen?
- What is the probability that the top card in a standard 52 card deck is a queen or the bottom card is a queen?

Probability of an intersection

- Say we have three colored balls in an urn (red, blue, green), and we draw two balls without replacement.
- Find the probability that the first ball is red, and the second is blue (Write down the outcome space and compute the probability)
- We can also write it down in sequence: $P($ first red, then blue $)=P($ first drawing a red ball) $\times P($ second ball is blue, given 1 st was red $)$

Multiplication rule

- Conditional probability written as $P(B \mid A)$, read as "the probability of the event B, given that the event A has occurred"
- The probability that two things will both happen is the chance that the first happens, multiplied by the chance that the second will happen given that the first has happened.
- Let $A, B \subseteq \Omega, P(A)>0, P(B)>0$

$$
\begin{gathered}
\frac{\text { Division Rule: }}{P(B \mid A)=} \frac{P(A \cap B)}{P(A)} \\
P(A) \neq 0
\end{gathered}
$$

- Multiplication rule:

$$
P(A \cap B)=P(A \mid B) \times P(B)
$$

2 nd
Exercise
$P(A \cap B)=P(B \cap A)=P(B) \times P(A \mid B)$
1/20262 Notes: Is $P(A \mid B)=P(B \mid A), P(A)>0>0$

