Lecture 35 4/19/2024
X is a contimions riv.
with density $f(x) \quad$ pf (x) $\geqslant 0$

$$
\begin{aligned}
& \text { e) } \int_{-\infty}^{\infty} f(x) d x=1 \\
& f(x)=\left\{\begin{array}{cc}
2 x, & 0<x<1 \\
0 & 0 / w
\end{array}\right.
\end{aligned}
$$

Area of shaded rectangle

$$
\approx f(x) \Delta x
$$

$$
P(x<X<x+\Delta x)
$$

$=$ shaded area $\approx f(x) \Delta x$

$$
f(x) \approx \frac{P(x<X<x+\Delta x)}{\Delta x}
$$

histograms from Data Δx
height of a bin $=\frac{70 \text { of data inking }}{\text { widthit bin }}$
for density histograms
y-axis \sim density.

$$
f(x) \rightarrow F(x)=P(X \leq x)
$$

area under $f=f(x)$ over
the specified interval: $(-\infty, x]$

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

Discrete riv.

$$
\begin{aligned}
& X, p \cdot m f f(x)=P(X=x) \\
& F(x)=P(X \leq x) \\
& E(X)=\sum_{x} x \cdot P(X=x) \\
& E(X)=\sum_{x} x \cdot f(x) \\
& \bar{E}(g(X))=\sum_{x} g(x) P(X=x) \\
&=\sum_{-x} g(x) f(x)
\end{aligned}
$$

$$
\text { ex } \cdot g(x)=x^{2}
$$

$$
\mathbb{E}(g(x))=\sum_{x} x^{2} f(x)
$$

$$
\operatorname{Var}(X)=\mathbb{E}\left[(x-\mu)^{2}\right]
$$

$$
\operatorname{Var}(X)=\sum_{x}(x-\mu)^{2} f(x)
$$

$$
\begin{aligned}
& \mathbb{E}(X)=\int_{-\infty}^{\infty} x \cdot f \underline{\underline{(x)}} d x=\mu \\
& \operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x^{\text {Show thar }} \operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right) \\
& \operatorname{VE}(X))^{2} \\
& \operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mu^{2}=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}
\end{aligned}
$$

All the properties of, Expectation \& variance carry over. a, b etc are always constants
(1) $\mathbb{E}(a X+b)=a \mathbb{E}(X)+b$
(2) $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
(3) $\operatorname{SD}(a X+b)=|a| S D(X)$
(4) $\mathbb{E}(a X+b Y)=a \mathbb{E}(X)+b \mathbb{E}(Y)$
(5) We say that X, Y are independent of for every interval A, B

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B)
$$

If X, Y are independent, then

$$
\begin{aligned}
& \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \\
& \operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

TWO SPECIAL DISTRIBUTIONS
(\#)exponential den
(2) normal din
(1) Exponential den.

We song that X las the exponential doe if its density function $f(x)= \begin{cases}e^{-x} & , x>0 \\ 0 & , 0 / w .\end{cases}$ This particular dsn $\left(f(x)=e^{-x}, x>0\right)$ is called the exp. Usn with rate 1 .
X is called an exponential r.v. with rate 1

$$
X \sim \exp (1)
$$

In general, we say that $X \sim \exp (\lambda)$ (" x has the exponential dsn with rate λ ")

$$
\text { if } f(x)= \begin{cases}\lambda e^{-\lambda x} & , x>0, \lambda>0 \\ 0, & , 0 / w\end{cases}
$$

λ is some positure constant.

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t=\int_{0}^{x} \lambda e^{-\lambda t} d t=\lambda \int_{0}^{x} e^{-\lambda t} d t \\
& =\not\left\langle\left[-\left.\frac{1}{\chi} e^{-\lambda t}\right|_{0} ^{x}\right]=1-e^{-\lambda x}\right. \\
F(x) & =\left\{\begin{array}{l}
1-e^{-\lambda x} \\
0, \\
0 \leq 0, \lambda>0
\end{array}\right.
\end{aligned}
$$

We usually we T to denote an exponential rev.

$$
\begin{aligned}
& T \sim \exp (\lambda) \Rightarrow P(T \leq x)=1-e^{-\lambda x}, x, \lambda>0 \\
& P(T>x)=1-\left(X+e^{-\lambda x}\right)=e^{-\lambda x}
\end{aligned}
$$

MEMORY LESS PROPERTY OF $T \sim \exp (\lambda)$

$$
\begin{aligned}
& P(T>s+t \mid T>t)=P(T>s) \\
& \mathbb{E}(T)=\frac{1}{\lambda} \longleftarrow T_{0} \begin{array}{l}
\text { obtain this, integrate } \\
\\
\\
\quad \int_{-}^{\infty} x \cdot f(x) d x=\int_{0}^{\infty} x \lambda e^{-\lambda} d x \\
\operatorname{Var}(T)=\frac{1}{\lambda^{2}}, S D(T)=\mathbb{E}(T)=\frac{1}{\lambda}
\end{array}
\end{aligned}
$$

$P(T>t)$ is the prob. that T 'survives" past time t.
So we define the survival function $S(t)$ by $S(t)=P(T>t)$
If T models the lifetime of a n object $S(t)$ is the chance that it last past tire t.
The "mine moryless" property of the exp. dsn just means that object "forgets" it has lasted for tine t.

$$
P(T>s+t \mid T>t)=P(T>s)
$$

Median of the exponential distribution. this is the value sit. half the din is to left of it \& half to the right.
If m is the median of the exp. $d s n$,

$$
\frac{P(T<h)}{E, h)}=\frac{P(T>h)}{1-F(h)} \quad \begin{aligned}
& \\
& =\operatorname{Pexp}(\lambda)=1-e^{-\lambda t}
\end{aligned}
$$

$$
1-e^{-e^{-\lambda h}}=\frac{e^{-\lambda h}}{S(h)}=P(T>h)
$$

n for
whit $2 e^{-\lambda h}=1$

$$
e^{-\lambda h}=\frac{1}{2} \Rightarrow e^{\lambda h}=2
$$

h is the halfway po int of the don

$$
\begin{gathered}
\lambda h=\ln (2)=\log (2) \quad \begin{array}{l}
\log _{2} \text { is } \\
\text { always } \ln \\
\text { unless }
\end{array} \\
h=\frac{\log (2)}{\lambda}=\log (2) \cdot \mathbb{E}(T) \begin{array}{l}
\text { un g }(2) \cdot \mathbb{E}(T) \\
\text { stated } \\
\text { othernce }
\end{array} \\
h<\mathbb{E}(T)
\end{gathered}
$$

Median < average

Lac 35 pant 1 4/22/2024
h is the value on the axis sit.

$$
\begin{aligned}
& F(h)=1-F(h) \\
& P(T<h)=P(T>h) \longleftarrow S(h)
\end{aligned}
$$

half-LifE
The half-life of a radioactive isotope is the time until half the ahoms have de caged.
λ is called the decay rate \& we nee T~exp (λ) to model the lifetime of a radioactive atom.
Ex. 10.5.4 Strontium -9 has a half life of 28.8 years If we assume exponential decay, how long will it take for $\frac{2}{3}$ of alumpof Strontium- 90 to decay?
$h=$ half-life which is the value sit.

$$
\begin{aligned}
& F(h)=S(h) \\
& \text { i.e } P(T \leqslant h) \text { or } P(T<h)=P(T>h) \\
& h=28.8 \text { years }
\end{aligned}
$$

$$
\begin{align*}
& h=\frac{\log (2)}{\lambda} \Rightarrow \lambda=\frac{\gamma .69}{28.8} \approx 0.024 \\
& T \sim \exp (\lambda) \Rightarrow f(t)=\lambda e^{-\lambda t}, \quad t>0 \\
& f(0)=\lambda \quad(\lambda>0)
\end{align*}
$$

$\begin{aligned} & \text { Want to fund } t_{0} \text { such that } \underbrace{P\left(T>t_{0}\right)}_{S\left(t_{0}\right)} \\ & \text { That is } F\left(t_{0}\right)=2 / 3\end{aligned}=1 / 3$

$$
\begin{aligned}
& =1-F\left(t_{0}\right) \\
& =e^{-\lambda t_{0}}
\end{aligned}
$$

$$
\begin{aligned}
F(t) & =1-e^{-\lambda t} \\
S(t) & =e^{-\lambda t} \\
t_{0} & =\frac{\log (3)}{\lambda} \\
& \approx 45.78 \text { years }
\end{aligned}
$$

We need to find to such that

$$
\begin{aligned}
e^{-\lambda t_{0}} & =\frac{1}{3} \\
e^{\lambda t_{0}} & =3 \\
\lambda t_{0} & =\log (3) \\
t_{0} & =\frac{\log (3)}{\lambda}
\end{aligned}
$$

The Normal distribution $£ 10.4$
$f(x)$ for the standard normal distribution:

$$
\begin{array}{ll}
f(x) & \mu=\mathbb{E}(z) \\
(Z \sim N(0,1) & \sigma^{2}=\operatorname{Var}(z)
\end{array}
$$

$$
N\left(\mu, \sigma^{\iota}\right) \quad f(x)=\frac{1}{\sqrt{2 \pi}} \frac{e^{-x^{2} / 2}}{}, x \in \mathbb{R}
$$

The nonormal p.d.f is defined on entire real line.

We candefune density for a more general normal distribuhn $\longleftarrow \longleftrightarrow 0.95 \longrightarrow$ centered of μ \& with SD σ.
We say that $X \sim N\left(\mu, \sigma^{2}\right)$ distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}},-\infty<x<\infty
$$

If $\quad X \sim N\left(\mu, \sigma^{2}\right)$
$Z=\frac{X-\mu}{\sigma} \sim N(0,1) \leftarrow \underset{\text { units }}{X}$ in standard units has the $N(0,1)$ distribute

$$
\begin{array}{ll}
\mathbb{E}(Z)=0 & , S D(Z)=1 \\
\mathbb{E}(X)=\mu & \mathbb{E}\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{\sigma} \mathbb{E}(X-\mu)=0 \\
S D\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{|\sigma|} S D(X-\mu)=\frac{1}{\sigma} S D(X)=\frac{\sigma}{\sigma}
\end{array}
$$

IMPORTANT FACT If $X \& Y$ are widependent $r . v . \& \quad X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right) \quad \& \quad Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$

$$
X+Y \sim N\left(\mu_{x}+\mu_{y}, \sigma_{x}^{2}+\sigma_{Y}^{2}\right)
$$

For example If $X \sim N(0,3), Y \sim N(1,4)$
X, Y ind., what is the din of $X+Y$?

$$
X+Y \sim N(0+1,3+4) \text { so } X+Y \sim N(1,7)
$$

What about $X+3 Y-2 ? \quad E(X+3 Y-2)$

$$
X+3 Y-2 \sim N(1,39)
$$

$$
=0+3-2=1
$$

what about $X-Y$?

$$
\operatorname{Var}(X+3 Y-2)
$$

$$
=\operatorname{Var}(X+3 Y)
$$

$$
\begin{aligned}
& \mathbb{E}(X-Y)=-1 \quad X-Y \sim N(-1,7) \\
& \operatorname{Var}(X-Y)=7
\end{aligned}
$$

$$
=\operatorname{Var}(x)+9 \operatorname{Vad}(x)
$$

$$
=3+9 \cdot 4=39
$$

We nee $X-Y$ or rather, din of the difference Of 2 normal r.v. all the tami for Conf. Int \& Hyp. fests.
Suppose $X_{1}, X_{2}, \ldots X_{n}$ cure iud $N\left(\mu_{x}, \sigma_{x}^{2}\right)$ $Y_{1}, Y_{2}, Y_{3}, \ldots Y_{m}$ are ind $N\left(\mu_{Y}, \sigma_{Y}\right)$

By CLT, $\bar{X} \approx N\left(\mu_{X}, \frac{\sigma_{X}^{2}}{n}\right), \bar{Y} \approx\left(\mu_{Y}, \frac{\sigma_{x}^{2}}{m}\right.$

$$
\bar{X}-\bar{Y} \approx N\left(\mu_{x}-\mu_{y}, \frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}\right)
$$

What is an approximate 95% CI for $\mu_{x}-\mu_{y}$?

$$
(\bar{X}-\bar{Y} \pm 2 * S D(\bar{X}-\bar{Y}))
$$

