$$
P \text {-value is a conditional distribution " } P\left(\text { data } \mid H_{0}\right) \text { " }
$$

Stat 88: Prob. \& Mathematical Statistics in Data Science

https://xkcd.com/892/

Lecture 33 : 4/15/2024 (PART 1)
Section 9.3, 9.4

A/B testing: comparing two distributions

- Data 8, section 12.3, randomized controlled trial to see if botulinum toxin could help manage chronic pain.
- 31 patients $\rightarrow 15$ in treatment group, 16 in control group. 2 patients in the control group reported pain relief and 9 in the treatment group.
- A / B testing is a term used to describe hypothesis tests which involve comparing the distributions of two random samples. (Earlier we had one sample and made a hypothesis about its distribution.)
- In particular, we can conduct an A / B test for hypothesis tests involving results of randomized controlled trials, A is the control group and B the treatment group.

- Control group: 16 patients, 2 reported relief Total \# of patients
- Treatment group: 15 patients, 9 reported relief reporting pans relief 511 (out of 31)
- H_{0} : The treatment has no effect (there would have been 11 patients reporting pain relief no matter what, and it just so happens that 9 of them were in the treatment group) (
- H_{A} : The treatment has an effect

Test statistic be the \# of patients that reported pain relief in sample (Treatrant)
If H_{0} is the then X is just the \# of successes in a SRS of size 15 out of 31 to tad with 11 successes in pop. of 31 .

$$
\underbrace{\text { with } 11 \text { successes in } H_{0} \text {. }}_{4 / 12 / 24} \text { UG(N=31,G=11,n=15)} \mathbb{H}\left(X \mid H_{0}\right)=15 \cdot \frac{11}{31} \approx 5.32
$$

Now let's use test statistic $T=X-5.32$, observed value of T $=9-5.32=3.68$

$$
\begin{aligned}
& P \text {-value }=P(|T| \geqslant 3.68)=P(X \leqslant 5.32-3.68) \\
& \text { obs. diff bo } 3.68 \\
& +p(x \geqslant 5.32+3.68) \\
& =P(x \leq 1.64)+P(x \geqslant 9) \\
& \begin{array}{l}
\left.\frac{5.32-3.68}{1.64}=\mathbb{E}\left(X \mid H_{0}\right)\right)_{9}^{\frac{5.32+3.68}{9}}=P(X \leq 1)+ \\
=0.00915
\end{array}
\end{aligned}
$$

Reject H_{0}; the tret (appears) to have an effect.

Exercsi for multiple chocolates
Example:The Lady Tasting Tea

- The first person to describe this sort of hypothesis test was the famous British statistician Ronald Fisher. In his book The Design of Experiments, he describes a tea party in which a lady of his acquaintance claimed that she could tell from tasting a cup of tea if the milk had been poured first or the tea.
- Fisher immediately set up an experiment in which she was given multiple cups of tea and asked to identify which of them had had the tea poured first. She tasted 8 cups of tea, of which 4 had the tea poured first, and identified 3 of them correctly. Does this data support her claim?

Exerasie

Example: Gender bias?

- Rosen and Jerdee conducted several experiments using male bank supervisors (this was in 1974) who were given a personnel file and asked to decide whether to promote or hold the file. 24 were randoml) assigned to a file labeled as that of a male employee and 24 to a female.
- 21 of the 24 males were promoted, and 14 of the females. Is there evidence of gender bias?

Moving on to Chapter 10
Chapter 10: Probability Density
Earlier we saw discrete vandomvasiables that took Λ particular. discrete values on \mathbb{R} and had discrete prob. mass functions.

Now instead of restricting the r.v. to pastionlar values, we allow it to take any value in a gwen interval.
For example we might have ar.v. X s.t. X is in $[0,1] \quad(X \in[0,1] \rightarrow 0 \leq X \leq 1)$
Instead of a prob. mass function, we will define a PROBABILITY DENSITY function. Imagine the total prob. mass of 1 is smeared over the interval according to the density function. Such ar.v. whose probabilities are defined tho wang is called a CONTINUOUS RANDOM VARIABLE \& the probabilities are computed by areas.
mass of 1
smeared across $[$ in Totalarea 1

If the density function of flat, We call X a uniform $r . v . \&$ the prob, that $X \in[a, b]$ is just the a read of rectangle whose base ni interval
 $[a, b]$

$$
P(X \in[a, b])=b-a
$$

$$
\begin{aligned}
& P\left(X \in\left[0, \frac{1}{2}\right]\right)=\frac{1}{2} \quad P\left(X \in\left[\frac{1}{4}, \frac{3}{4}\right]\right)=\frac{1}{2} \\
& P\left(X \in\left[\frac{1}{2}, 1\right]\right)=\frac{1}{2}
\end{aligned}
$$

If X is a uniform $r \cdot v$. (density function is flat)
then the only thing that matters si with of the criterval, not where it is $m[0,1]$

$$
\begin{aligned}
& P\left(\frac{1}{4}<X<\frac{3}{4}\right)=P\left(X \in\left(\frac{1}{4}, \frac{3}{4}\right)\right. \\
& 1 \frac{1}{2}=P\left(X \in\left[\frac{1}{4}, \frac{3}{4}\right]\right) \\
&=\frac{1}{\frac{1}{4}} \frac{\frac{3}{4} 1}{1}
\end{aligned}
$$

Define a prob density function $f(x)$ by (1) $f(x) \geqslant 0$

$$
\text { (2) } \int_{-\infty}^{\infty} f(x) d x=1
$$

$C d f$ is defined to be $F(x)=\int_{-\infty}^{x} f(t) d t$

$$
f(x)= \begin{cases}\frac{1}{2}, & 0 \leq x \leq 2 \\ 0 & 0 / w\end{cases}
$$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{0}^{x} \frac{1}{2} d t
$$

$$
F(1.2)=P(X \leq 1.2)=\int_{-\infty}^{1.2} \frac{1}{2} d t=\int_{0}^{1.2} \frac{1}{2} d t=\frac{1.2}{2}=0.6
$$

