Stat 88: Prob. \& Mathematical Statistics in Data Science

Lecture 31: 4/10/2024
Section 9.1, 9.2
Confidence intervals

Goal: Estimate a population parameter. Using \bar{X} to estimate $\mu \quad X_{1}, X_{2}, \ldots X_{n}$ fid: μ, σ^{2}

- \bar{X} is an unbiased estimator of μ (what does that mean?) $\mathbb{E}\left(X_{\mathcal{K}}\right)=\mu$
- If we also know that each of the X_{k} had $S D \sigma$, what can we say about $S D(\bar{X})$?

$$
\operatorname{SD}(\bar{X})=\sigma / \sqrt{n}
$$

- What does the Central Limit theorem say about the sample mean? For n large enough $\bar{x} \approx$
- We will use the CLT and the sample mean to define a random interval (why is it random?) that will cover the true mean with a specified probability, say 95%
- Based on data from a random sample, we will construct an interval of estimates for some unknown (but fixed) population parameter.
\sim^{11}
\sim approximately distributed as"

$$
4 / 1024
$$

$$
\begin{aligned}
& \text { proximately distributed a } \\
& X \sim \operatorname{Bin}(n=100, p=0.5) \quad \sigma=\sqrt{n p q}=\sqrt{100 \times \frac{1}{2} \times \frac{1}{2}}
\end{aligned}
$$

$$
X \approx N(\mu=50, \sigma=5)<\text { example }=5
$$

Given an cid sample x_{1}, $x_{2}, \ldots x_{n}$
By CLT, $\bar{X}=\frac{x_{1}+x_{2}+\ldots x_{n}^{n}}{n}$ is approx normal with $n \mathbb{E}(\bar{X})=\mu, \operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n}$

$$
\left.z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \approx N(0,1) \quad \text { (by } C L T\right)
$$

$$
P(-2 \leq z \leq 2) \approx 0,95
$$

$$
\begin{gathered}
z=\frac{\bar{X}-\alpha}{\sigma / \sqrt{n}} \\
P(-2 \leq z \leq 2) \approx 0.95 \\
P\left(-2 \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq 2\right) \approx 0.95 \\
P\left(-2 * \frac{\sigma}{\sqrt{n}}-\bar{X} \leq-\mu \leq 2 * \frac{\sigma}{\sqrt{n}}-\bar{X}\right) \approx \\
\leftrightarrows P\left(\bar{X}-\frac{2 \sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+\frac{2 \sigma}{\sqrt{n}}\right)=0.95
\end{gathered}
$$

$$
\Phi^{-1}(0.015)=-a
$$ stats. norm. PPS (0.015)

$$
\begin{gathered}
P\left(\bar{X}-a \times \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+\frac{a \sigma}{\sqrt{n}}\right) \\
\approx 0.97=97 \%
\end{gathered}
$$

$$
\left(\bar{x}-2 \frac{\sigma}{\sqrt{n}}, \bar{x}+2 \frac{\sigma}{\sqrt{n}}\right) \text { is called }
$$

Once I plug in my observed value for \bar{X}. (call this \bar{x})

$$
\left.\bar{x}-2 \frac{\sigma}{\sqrt{n}}, \bar{x}+\frac{2 \sigma}{\sqrt{n}}\right) 95 \% C I
$$

Confidence intervals

- In the previous slide, we derived an approximate 95\% Confidence Interval for the population mean μ
-Why is the interval random?

- A confidence interval is an interval on the real line, that is, a collection of values, that are plausible estimates for the true mean μ.
- Using the CLT, we can estimate the chance that this interval contains the true mean. If we want the chance to be higher, we make the interval bigger. The interval is like a net. We are trying to catch the true mean in our net.

$$
\text { width ounkerval }=2 \text { a magi }
$$

- The CLT takes the form: $\bar{X} \pm$ margin of error, where the margin of error tells Mover us how big our interval is, and depends on the SD of the sample mean.
- The margin of error $=z_{\alpha / 2} \times S D(\bar{X})$, where $z_{\alpha / 2}$ is the quartile we need to have an area of $1-\alpha$ in the middle, that is, a coverage probability of $1-\alpha$

$$
\sigma=20 \quad \mu=?
$$

- A population distribution is known to have an SD of 20 . The average of an id sample of 64 observations is 55 . What is your 95% confidence $n=64 \quad \bar{x}=55$ \square 1.96 $=z$-score for 95%

$$
\begin{aligned}
I=\left(55-2 * \frac{20}{8}, 55+2 * \frac{20}{8}\right) & =(55-5,55+5) \\
& =(50,60)
\end{aligned}
$$

$=(50,60)$
What is the prob that this interval contains μ. (0 or 1)

Confidence levels

- The probability with which our random interval will cover the mean is called the conficidence level
- In reality (vs theory), we will have just one realization (observed value) of the sample mean (from our data sample), and we use that value to write down the realization of our random interval.
-What would we do differently if we wanted a $68 \% \mathrm{CP}$? 99.7\% CI?

Dealing with proportions

- A sample proportion is just the sample mean of a special population of 0 's and 1's.
- This kind of population is so common since many of our problems deal with classifying and counting.
- We have a population of 1 million in a town. We take a SRS of size 400 and find that 22% of the sample is unemployed. Estimate the percentage of unemployed people in the town.
when the X_{k}^{\prime} 's are O or 1 , present Bin .
X is a proportion
 called \hat{p}剘 $\overline{\text {) }}$

$$
\operatorname{Var}(\bar{x})
$$

$$
\begin{aligned}
& \hat{p}=0.22 \quad \mathbb{E}(X)=n p \quad \operatorname{Var}(X)=n p q \\
& X=X_{1}+X_{2}+\cdots+X_{400} \\
& \mathbb{E}\left(X_{k}\right)=p=? \quad \operatorname{Var}\left(X_{k}\right)=p(1-p) \\
& \widehat{\approx}(1-\hat{p}) \\
& \operatorname{SD}(\bar{X})=\operatorname{SD}(\hat{p}) \approx \frac{\hat{p}(1-\hat{p})}{\sqrt{n}}=\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{400}}
\end{aligned}
$$

Exerasi Complete-thon

$$
\hat{p} \pm 2 * \frac{\sigma}{r_{r}}
$$

Example

In a simple random sample of 400 voters in a state, 23% are undecided about which way they will vote. Find a $95 \% \mathrm{Cl}$ for the proportion of undecided voters in the state.

- In the above problem, find 99.7\% confidence interval.

