
Stat 88: Probability and Statistics in Data Science

1/22/24

Shobhana M. Stoyanov

Agenda

Quick recap of terms

Section 1.2: Exact calculations or bounds unions vs intersections addition rule

Section 1.3: Fundamental Rules (the Axioms of Probability) Notation

Axioms

Consequences of the axioms

De Morgan's Law

Terminology

- *Experiment*: action that results in exactly one of several possible outcomes or results, and chance or randomness is involved that is, each time we perform the action, the outcome will be different, and we don't know exactly which outcome will occur.
- A collection of all possible outcomes of an action is called a sample space or an outcome space. Usually denoted by Ω (sometimes also by S). Ω : certain event $\phi = 23 = \text{``in possible event''}$
- An $\operatorname{event} A$ is a collection of outcomes and $A\subset \Omega$
- A *distribution* of the outcomes over some categories represents the proportion of outcomes in each category (each outcome appears in one and only one category)
- The complement of an event A is an event consisting of all the outcomes that are not in A. It is denoted by A^{C} and we have that $P(A^{C}) = 1 P(A)$ (Complement Rule)

Terminology & rules

- $P(A) = \frac{\#(A)}{\#(\Omega)}$, every ontrane is equally likely • Toss a conitive $T = \frac{\#}{H} = \frac{\#}{H} = \frac{\#}{H} = \frac{\#}{H} = \frac{\#}{H} = \frac{2}{H} = \frac{2}{H} + \frac{2}{H} + \frac{2}{H} + \frac{2}{H} + \frac{2}{H} + \frac{2}{H} + \frac{2}{H} = \frac{2}{H} + \frac{2$
- Multiplication: If an experiment is in k stages, and each stage i results in n_i outcomes, then the total number of outcomes is $n_1 \times n_2 \times ... n_k$
- The complement of an event A is an event consisting of all the outcomes that are not in A. It is denoted by A^C and we have that $P(A^C) = 1 P(A)$ (Complement Rule) $P(A^C) = \frac{\#(A^C) \#(A)}{\#(A^C)} = \frac{\#(A^C) \#(A)}{\#(A^C)} = \frac{\#(A^C) \#(A^C)}{\#(A^C)} = \frac{\#(A^C) \#$

•
$$P(A | B) = \frac{\#(A \text{ and } B)}{\#(B)}$$
 (The conditional probability of A given B)
• $P(B | B) = 1$
• $P(A) \leq I(D)$ (The conditional probability of A given B)

· . (P(A) ≤ P(𝒫) ACN

= ANB or AB

From Friday: Not equally likely outcomes

YouTube, Instagram and Snapchat are the most popular online platforms among teens

Note: Figures in first column add to more than 100% because multiple responses were allowed. Question about most-used site was asked only of respondents who use multiple sites; results have been recalculated to include those who use only one site. Respondents who did not give an answer are not shown.

Source: Survey conducted March 7-April 10, 2018.

"Teens, Social Media & Technology 2018"

PEW RESEARCH CENTER

1. What is the chance that a randomly picked teen uses FB most often?

0.1

2. What is the chance that a randomly picked teen did *not* use FB most often? 0.9 = 1 - 0.1

3. What is the chance that FB *or* Twitter was their favorite?

0.1+0.03 = 0.13

4. What is the chance <u>that the teen used</u> FB, just not most often?

0.51-0.1 € 0.41

5. Given that the teen used FB, what is the chance that they used it most often?

 $10/51 = 0.1/0.51 \approx 0.2$

#(ANB) #(R)

P(A)

Notation: Intersections and Unions

When two events *A* and *B* both happen, we call this the *intersection* of *A* and *B* and write it as

A and $B = A \cap B$ (also written as AB)

When either A **or** B happens, we call this the **union** of A and B and write it as

A or $B = A \cup B$

If two events A and B *cannot both occur* at the same time, we say that they are *mutually exclusive* or *disjoint*.

$$A \cap B = \emptyset$$

Exercise from Friday

Rules that we used: Addition rule

If all the possible outcomes are equally likely, then each outcome has probability 1/n, where n = number of possible outcomes. If an event A contains k possible outcomes, the P(A) = k/n. = #(A) #(S)Probabilities are between 0 and 1 (b) P(A) is a proportion)

If two events A and B don't overlap, then the probability of A or B = P(A) + P(B) (since we can just add the number of outcomes in one and the other, and divide by the number of outcomes in Ω)

$$P(A \text{ or } B) = P(P \cup B)$$

$$= P(A) + P(B)$$

$$= \#(A) + \#(B)$$

$$= \#(A) + \#(B)$$

$$\#(-2) + \#(-2)^{T}$$

Rules of probability

Let's think about what rules we can lay down, based on what we have seen so far. Let SI be ontrome space , ACSI $P(A) \leq P(\mathcal{R}) = 1$ P(A) = #(A) = k = 4 all outcomes $\#(SC)^n$ are eq. likely The intersection of A8 $\overrightarrow{AB} = \cancel{B}$ $0 \leq P(A)$ 3) if A & B don't overlap then P(A or B) = P(A) + PB) Addition Rule 5) $P(A^{c}) = (-P(A))$ CA Conot A

Origins of probability: de Méré's paradox

Questions that arose from gambling with dice.

Antoine Gombaud, Chevalier de Méré

Pierre de Fermat

The dice players Georges de La Tour (17th century)

De Méré's Paradox: in section tomorrow

We can think about probability as a numerical measure of uncertainty, and we will define some basic principles for computing these numbers.

These basic computational principles have been known for a long time, and in fact, gamblers thought about these ideas a lot. Then mathematicians investigated the principles.

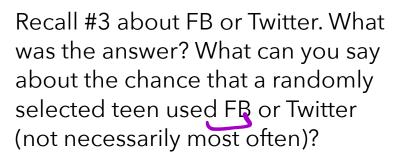
Famous problem: will the probability of at least one six in four throws of a die be equal thought that both these were the same = 2 to prob of **at least a double six** in 24 throws of a pair of dice.

Note: single = die, plural = dice:

2) What are the correct

1) How?

Section 1.2: Exact Calculations, or Bound?


YouTube, Instagram and Snapchat are the most popular online platforms among teens

% of U.S. teens who ... Say they use ... Say they use ____ most often YouTube Instagram Snapchat Facebook 10 32 3 Twitter Tumblr <1 Reddit None of the above 3 3 column add to more than 100% because multiple responses were

allowed. Question about most-used site was asked only of respondents who use multiple sites; results have been recalculated to include those who use only one site. Respondents who did not give an answer are not shown. Source: Survey conducted March 7-April 10, 2018. "Teens, Social Media & Technology 2018"

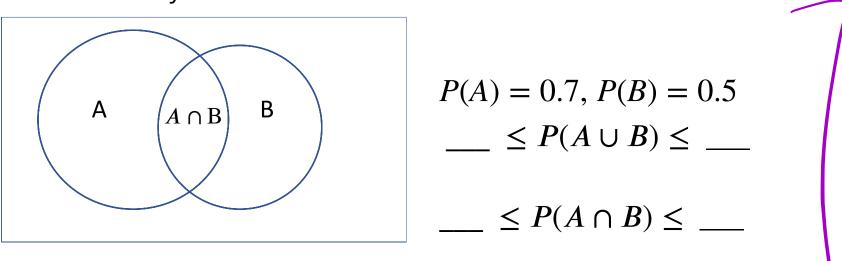
PEW RESEARCH CENTER

The prob of FB or T, = $0.83if(FB) \cap (T) = 0$

= 0.51 + 0.32 = 0.837

Ft

P(FB mT)



Bounds Overlap = Intersection Bounds Bassest Overlap - Largest Intersection When we get some information about the outcome or event whose probability we want to figure out, our outcome space reduces,

incorporating that information.

 $P(A \cup B)$ for mutually exclusive events

Bounds on probabilities of unions and intersections when events are *not* mutually exclusive.

Example with bounds

Let A be the event that you catch the bus to class instead of walking, P(A) = 70%Let B be the event that it rains, P(B) = 50%What is the chance of **at least** one of these two events happening?

What is the chance of **both** of them happening?

Exercise: what about if we have 3 events?

Let A be the event that you catch the bus to class instead of walking, P(A) = 70%Let B be the event that it rains, P(B) = 50%Let C be the event that you are on time to class, P(C) = 10%What is the chance of **at least** one of these three events happening?

What is the chance of **all three** of them happening?