Stat 88: Prob. \& Math. Statistics in Data Science

HOW TO ANNOY A STATISTICIAN
xkcd.com/2118

Lecture 29: 4/3/2024
The law of averages, distribution of a sample sum

$$
7.3,8.1,8.2
$$

Law of Averages

- Essentially a statement that you are already familiar with: If you toss a fair coin many times, roughly half the tosses will land heads.
- We are going to consider sample sums and sample means of iid random variables $X_{1}, X_{2}, \ldots, X_{n}$ where the mean of each X_{k} is μ and the variance of each X_{k} is σ^{2}.
- Recall the sample sum $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, with $E\left(S_{n}\right)=n \mu$, $\operatorname{Var}\left(S_{n}\right)=n \sigma^{2}, S D\left(X_{n}\right)=\sqrt{n} \sigma$
- We see here, as we take more and more draws, the variability of the sum keeps increasing, which means the values get more and more dispersed around the mean ($n \mu$).

Simulating coin tosses: 10 tosses (adapted from FPP)

\#of $H=X \sim B_{i n}(n, p) \quad X$ is a sum of Bernoulli):

SD for \# of
Heads $=\sqrt{n} \sqrt{p(1-p)}$
number of tosses

$$
\text { Oo theads }=\frac{x}{n} \quad \operatorname{sD}\left(\frac{x}{n}\right)=\frac{\sqrt{p(1-p)}}{\sqrt{n}}
$$

Law of Averages for a fair coin

- Notice that as the number of tosses of a fair coin increases, the observed error (number of heads - half the number of tosses) increases. This is governed by the standard error.

$$
\% \text { error }=\% \text { theads }-0.5 \longrightarrow 0
$$

- The percentage of heads observed comes very close to 50%
- Law of averages: The long run proportion of heads is very close to 50%.

$$
S_{10} \sim \operatorname{Bin}\left(100, \frac{1}{2}\right) \quad S_{400} \sim \operatorname{Bin}\left(400, \frac{1}{2}\right)
$$

$$
\# \text { Of } H \sim \operatorname{Bin}(n, p)
$$

- Consider a fair coin, toss it 100 times \& 400 times, count the number of H Expect in first case, roughly 50 H , and in second, roughly 200 H .
- So do you think chance of 50 H in 100 tosses and 200 H in 400 tosses should be the same?

$$
S_{100} \sim \operatorname{Bin}\left(100, \frac{1}{2}\right) \quad S_{400} \sim \operatorname{Bin}\left(400, \frac{1}{2}\right)
$$

Example: Coin toss
$\cdot \operatorname{sD(S_{100})}=\sqrt{n P(1-p)}=\sqrt{100 \frac{1}{2}} \cdot \frac{1}{2}=5$
Square root law.

- $P^{P(200 \text { H in } 400 \text { tosses })} P\left(S_{400}=200\right)=\binom{400}{200}\left(\frac{1}{2}\right)^{200}\left(\frac{1}{2}\right)^{200}$

$$
\approx 0.04
$$

- $\mathrm{P}(50 \mathrm{H}$ in 100 tosses $)$

$$
P\left(S_{100}=50\right)=\binom{100}{50}\left(\frac{1}{2}\right)^{50}\left(\frac{1}{2}\right)^{50} \approx 0.08
$$

Sample sum, sample average, and the square root law

- $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$
- Let $A_{n}=S_{n} / n$, so A_{n} is the average of the sample (or sample mean).
- If the X_{k} are indicators, then A_{n} is a proportion (proportion of successes) (Bernoulli)
- Note that $E\left(A_{n}\right)=\mu$ and $S D\left(A_{n}\right)=\frac{2 D\left(X_{k}\right)}{\sqrt{n}}$
- The square root law: the accuracy of an estimator is measured by its SD, the smaller the SD, the more accurate the estimator, but if you multiply the sample size by a factor, the accuracy only goes up by the square root of the factor.
- In our earlier example, we \qquad the accuracy by quadrupling the size.

Ne doubled SD so halved the accuracy.

$$
\begin{aligned}
& S D\left(X_{k}\right)=\sigma, \quad \mathbb{E}\left(X_{k}\right)=\mu \\
& S D\left(S_{n}\right)=\sqrt{n} \sigma \\
& \begin{array}{l}
X_{1}, X_{2}, \ldots X_{n} S_{n}=X_{1}+X_{2}+\cdots+x_{n}, A_{n}=\frac{S_{n}}{n}, S D\left(A_{n}\right)=S D(\bar{X})=\frac{S D\left(X_{k}\right)}{\sqrt{n}} \quad \text { Concentration of probability }
\end{array} \\
& \text { - This is when the SD decreases, so the probability mass accumulates } \\
& \text { around the mean, therefore, the larger the sample size, the more likely } \\
& \text { the values of the sample average } \bar{X} \text { fall very close to the mean. } \\
& \text { - Weak Law of Large numbers: \& } d r \text { dance } b / w \text { the sample } \\
& \text { mean } 8 \text { exp. } \\
& \text { For } c>0, P\left(\left|A_{n}-\mu\right|<c\right) \rightarrow 1 \text { as } n \rightarrow \infty \quad \text { Value } \\
& \left|A_{n}-\mu\right| \text { is the distance between the sample mean and its expectation. }
\end{aligned}
$$

4/324 For any $c>0$, HOWE VER TINY年, as long as n is large enough, the chance that A_{n} is VERY CLOSE

Law of averages

- The law of averages says that if you take enough samples, the proportion of times a particular event occurs is very close to its probability.
- In general, when we repeat a random experiment such as tossing a coin or rolling a die over and over again, the average of the observed values will come the expected value.
- The percentage of sixes, when rolling a fair die over and over, is very close to $1 / 6$. True for any of the faces, so the empirical histogram of the results of rolling a die over and over again looks more and more like the theoretical probability histogram.
- Law of averages: The individual outcomes when averaged get very close to the theoretical weighted average aka expected value
8.1: Distribution of a sample sum $S_{n}=x_{1}+x_{2}+\cdots+x_{n}$

$$
X \sim \text { Bernoulli (} 1 \frac{1}{2} \text {) }
$$

- We can consider $X \sim \operatorname{Bin}(20,0.5)$ as the sum of 20 Bernoulli id rvs. Visualizing the prob. mass function (mf) of the binomial below:

Number of heads in 20 tosses

Visualizing the prob.mass function (pmf)

PMF of $\alpha-\operatorname{Bin}(20,0.25)$

What if p is small?

- Consider $X_{k} \sim \operatorname{Bernoulli}\left(\frac{1}{10}\right), S_{n}=X_{1}+X_{2}+X_{3}+\cdots+X_{n}, \operatorname{Sn} \sim \operatorname{Bin}\left(n, \frac{1}{10}\right)$
- Draw the probability histogram for X_{k} :

$$
X_{k}=\left\{\begin{array}{lll}
0 & w & \frac{9}{10} \\
1 & w \cdot p & \frac{1}{10}
\end{array}\right.
$$

When p is small (picture from Statistics by Freedman, Pisani, and Purves)

Distribution of the sample sum

- More generally, let's consider $X_{1}, X_{2}, \ldots, X_{n}$ iid with mean μ and SD σ
- Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$
- We know that $E\left(S_{n}\right)=n \mu$ and $S D\left(S_{n}\right)=\sqrt{n} \sigma$

Probabilithes of sample

- We want to say something about the distribution of $S_{n,}$, and while it may SUN. be possible to write it out analytically, if we know the distributions of the X_{k}, it may not be easy. And we may not even know anything beyond the fact that the X_{k} are iid, and we might be able to guess at their mean and SD.
- We saw in the previous slides that even if the X_{k} are very far from symmetric, the distribution of the sum begins to look quite nice and bell shaped.
- What if the X_{k} are strange looking?

Weird X_{k} distributions - is the distribution of S_{n} different?

4/3/24

From section 8.1

Examples by picture
Probability distribution of X_{k}

Sample distribution $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$,

Distribution of the sample mean $\frac{S_{n}}{n}=A_{n}$

The Central Limit Theorem

- The bell-shaped distribution is called a normal curve.
- What we saw was an illustration of the fact that if $X_{1}, X_{2}, \ldots, X_{n}$ iid with mean μ and $\operatorname{SD} \sigma$, and $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, then the distribution of S_{n} is approximately normal for large enough n.
- The distribution is approximately normal (bell-shaped) centered at $E\left(S_{n}\right)=n \mu$ and the width of this curve is defined by $S D\left(S_{n}\right)=\sqrt{n} \sigma$

Bell curve: the Standard Normal Curve

- Bell shaped, symmetric about 0
- Points of inflection at $z= \pm 1$
- Total area under the curve $=1$, so can think of curve as approximation to a probability histogram
- Domain: whole real line
- Always above x-axis
- Even though the curve is defined over the entire number line, it is pretty close to 0 for $|z|>3$

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}},-\infty<z<\infty
$$

