Stat 88: Prob. \& Math. Statistics in Data Science

HOW TO ANNOY A STATISTICIAN

Lecture 28: 4/1/2024
The law of averages, distribution of a sample sum

$$
7.3,8.1,8.2
$$

$$
S_{F}=S_{n}, A_{n}=\bar{x}
$$

Story so far... $X_{1}, X_{2}, \ldots X_{w}$ are iid riv.

$$
S=x_{1}+x_{2}+\cdots+x_{n}
$$

- Variance and SD of sums of fid random variables:

$$
\operatorname{Var}\left(S_{n}\right)=n \sigma^{2} \quad S D\left(S_{n}\right)=\sqrt{n} \sigma
$$

$$
\begin{aligned}
& \mathbb{E}\left(X_{k}\right)=\mu, \operatorname{Var}\left(X_{k}\right)=\sigma^{2} \\
& \mathbb{E}(S)=n \mu \\
& P) \quad S=S_{n}, A_{n}=\bar{X} \\
& P) \quad A_{n}=\frac{S}{n}
\end{aligned}
$$

- Variance of a Binomial rv

$$
X_{k} \sim \text { Bernoulli }(P)
$$

$\operatorname{Var}(x)=n p q=n p(1-p)$

$$
x(x)=n p(n, \rho)
$$

- SD of a sample sum lincerefyith n, whereas the SD of a sample mean deceress with n.

$$
\begin{aligned}
& S D\left(S_{n}\right)=\sqrt{n} \cdot \sigma \\
& S D\left(A_{n}\right)=S D\left(\frac{S_{n}}{n}\right)=\frac{1}{n} S D\left(S_{n}\right)=\frac{\sqrt{1} \sigma}{\sqrt{n}} \\
& \text { mile random sample (SRRS), the draws are without }
\end{aligned}
$$

$S D\left(A_{n}\right)=\frac{\sigma}{\sqrt{n}}$ $\operatorname{Vac}(x)=p-p^{2}$ replacement (like drawing cards from a deck).

- Variance of hypergeometric rv:

$$
X \sim H G(N, G, n)
$$

$$
n \cdot\left(\frac{G}{N}\right)\left(\frac{N-G}{N}\right)\left[\frac{N-n}{N-1}\right]=\operatorname{Var}(X)
$$

- Finite population correction:

$$
\frac{\text { correction: }}{f-p c}=\sqrt{\frac{N-n}{N-1}}
$$

4/1/24
SD of sum of iud riv.* f.p.c
$=S D$ of sum of $S R S$

Suppose X is sum of draws of tickets from a box.
SD of sum W ITHOUTREPL $=$ SD of SUM W/Repl $\& f P C$
Accuracy of samples (depend on the SD of the sample mean/sum)

- Simple random samples of the same size of 625 people are taken in Berkeley (population: 121,485) and Los Angeles (population: 4 million). True or false, and explain your choice: The results from the Los Angeles poll will be substantially more accurate than those for Berkeley.
Fpc in case of Berkeley: 0.9974285
Fpc in case of LA: 0.999922

Example adapted from Statistics, by FPP

- A survey organization wants to take an SRS in order to estimate the percentage of people who watched the 2022 Oscars. To keep costs down, they want to take as small a sample as possible, but their client will only tolerate a random error of 1 percentage point or so in the estimate. Should they use a sample size of 100,2500 , or 10000 ? The population is very large and the fpc is about 1.
What n to use? Note that the number of people who have watched the Oscars in the sample is a rv with the $\operatorname{HG}(N, G, n)$ distribution.

Note that Nivery large so can pretend that 4/1/24 we are sampling w/replacement.

Pretend that we are sampling w/replacement
$X=$ \# of people in sample that watched the Oscess

$$
X \sim \operatorname{Bin}(n, p) \quad(f p c \approx 1)
$$

Percent of peoplem sample approximately that watched oscars $=\frac{x}{n}$

$$
\begin{aligned}
& \mathbb{E}(X)=n p \quad \operatorname{Var}(X)=n p(1-p) \\
& S D(X)=\sqrt{n p(1-p)} \\
& S D\left(\frac{X}{n}\right)=\frac{\sqrt{p(1-p)}}{\sqrt{n}} \leqslant 0.01
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x(1-x), 0 \leq x \leq 1 \\
& \begin{array}{l}
x(1-x) \leq 0.25 \\
\sqrt{x(1-x)} \leq 0.5
\end{array} \\
& \begin{array}{l}
\frac{0.5}{0.01} \leq \sqrt{n} \\
\text { Therefore, what } \\
\text { say about } n ?
\end{array} \\
& 50 \leq \sqrt{n} \\
& 2500 \leq n
\end{aligned}
$$

Example (adapted from Statistics, by Freedman, Pisani, and Purves)

- Note that the number of people who have watched the Oscars in the sample is a rv with the $H G(N, G, n)$ distribution, but we are told that N is very large $\& f p c \approx 1$, so we can approximate the prob. using the $\operatorname{Bin}(n, p)$ distribution, where p is the percentage of people who watched the Oscars (which is what we are trying to estimate).
- $S D\left(\frac{S_{n}}{n}\right)=\frac{\sigma}{\sqrt{n}}=\frac{\sqrt{p q}}{\sqrt{n}} \leq \frac{0.5}{\sqrt{n}} \leq 0.01 \Rightarrow n \geq 2500$

Exercise 7.4.11 Exerusi

Each Data 8 student is asked to draw a random sample and estimate a parameter using a method that has chance 95% of resulting in a good estimate.
Suppose there are 1300 students in Data 8. Let X be the number of students who get a good estimate. Assume that all the students' samples are independent of each other.

- a) Find the distribution of X
- b) Find $E(X)$ and $S D(X)$.
- c) Find the chance that more than 1250 students get a good estimate.

Law of Averages

- Essentially a statement that you are already familiar with: If you toss a fair coin many times, roughly half the tosses will land heads.
- We are going to consider sample sums and sample means of iid random variables $X_{1}, X_{2}, \ldots, X_{n}$ where the mean of each X_{k} is μ and the variance of each X_{k} is σ^{2}.
- Recall the sample sum $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, with $E\left(S_{n}\right)=n \mu$, $\operatorname{Var}\left(S_{n}\right)=n \sigma^{2}, S D\left(S_{n}\right)=\sqrt{n} \sigma_{\uparrow}$ fixed
- We see here, as we take more and more draws, the variability of the sum keeps increasing, which means the values get more and more dispersed around the mean ($n \mu$).

Coin tosses

- Consider a fair coin, toss it 100 times \& 400 times, count the number of H Expect in first case, roughly 50 H , and in second, roughly 200 H .
- So do you think chance of 50 H in 100 tosses and 200 H in 400 tosses should be the same?

Example: Coin toss

- $S D\left(S_{100}\right)=$
- $S D\left(S_{400}\right)=$
- $\mathrm{P}(200 \mathrm{H}$ in 400 tosses $)$
- $P(50 \mathrm{H}$ in 100 tosses $)$

Simulating coin tosses: 10 tosses (adapted from FPP)

\% error $=0$
\%H-0.5

Law of Averages for a fair coin

- Notice that as the number of tosses of a fair coin increases, the observed error (number of heads - half the number of tosses) increases. This is governed by the standard error.
- The percentage of heads observed comes very close to 50%
- Law of averages: The long run proportion of heads is very close to 50%.

