
Stat 88: Prob. & Math. Statistics in Data Science

Lecture 28: 4/1/2024
The law of averages, distribution of a sample sum
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Story so far…
• Variance and SD of sums of iid random variables:

• Variance of a Binomial rv

• SD of a sample sum _____ with n, whereas the SD of a sample mean 
____ with n.

• When we have a simple random sample (SRS), the draws are without 
replacement (like drawing cards from a deck).

• Variance of hypergeometric rv:

• Finite population correction:
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Accuracy of samples (depend on the SD of the sample mean/sum) 

• Simple random samples of the same size of 625 people are taken in Berkeley 
(population: 121,485) and Los Angeles (population: 4 million). True or false, 
and explain your choice: The results from the Los Angeles poll will be 
substantially more accurate than those for Berkeley.

Fpc in case of Berkeley: 0.9974285
Fpc in case of LA: 0.999922

Example adapted from Statistics, by FPP
• A survey organization wants to take an SRS in order to estimate the 

percentage of people who watched the 2022 Oscars. To keep costs down, 
they want to take as small a sample as possible, but their client will only 
tolerate a random error of 1 percentage point or so in the estimate. Should 
they use a sample size of 100, 2500, or 10000? The population is very large 
and the fpc is about 1.

What ! to use? Note that the number of people who have watched the Oscars in 
the sample is a rv with the  "#(%, #, !) distiribution.
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Example (adapted from Statistics, by Freedman, Pisani, and Purves) 

- Note that the number of people who have watched the Oscars in the 
sample is a rv with the  "#(%, #, !) distribution, but we are told that % is very 
large & ()* ≈ 1, so we can approximate the prob. using the -.!(!, )) 
distribution, where ) is the percentage of people who watched the Oscars 
(which is what we are trying to estimate).

- 01 !!
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" ≤ 0.01 ⇒ ! ≥ 2500 
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Exercise 7.4.11

Each Data 8 student is asked to draw a random sample and estimate a 
parameter using a method that has chance 95% of resulting in a good estimate.
Suppose there are 1300 students in Data 8. Let : be the number of students 
who get a good estimate. Assume that all the students' samples are 
independent of each other.

• a) Find the distribution of :

• b) Find ;(:) and 01(:).

• c) Find the chance that more than 1250 students get a good estimate.
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Law of Averages

• Essentially a statement that you are already familiar with: If you toss a 
fair coin many times, roughly half the tosses will land heads.

• We are going to consider sample sums and sample means of iid 
random variables :), :*, … , :" where the mean of each :+	is > and the 
variance of each :+	is ?*. 

• Recall the sample sum  0" = :) + :* +⋯+ :", with ; 0" = !>, 
BCD 0" = !?*, 01 :" = !?

• We see here, as we take more and more draws, the variability of the 
sum keeps increasing, which means the values get more and more 
dispersed around the mean (!>).
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Coin tosses
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• Consider a fair coin, toss it 100 times & 400 times, count the number of H
Expect in first case, roughly 50 H, and in second, roughly 200 H.  

• So do you think chance of 50 H in 100 tosses and 200 H in 400 tosses should 
be the same?

From section 7.3



Example: Coin toss

• 01 0)&& =	
• 01 0,&& =

• P(200 H in 400 tosses) 

• P(50 H in 100 tosses)
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Simulating coin tosses: 10 tosses (adapted from FPP)
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Law of Averages for a fair coin

• Notice that as the number of tosses of a fair coin increases, the observed 
error (number of heads – half the number of tosses) increases. This is 
governed by the standard error.

• The percentage of heads observed comes very close to 50%

• Law of averages: The long run proportion of heads is very close to 50%.

4/1/24 13


