Stat 88: Probability and Mathematical Statistics in Data Science

https://imgs.xkcd.com/comics/meteorologist.png

Lecture 1: 1/17/2024
Course introduction and the basics
Shobhana Stoyanov

Agenda

- Course resources:
- Course site: http://stat88.org
- Announcements and discussions: Ed discussion forum
- Assignments and grades: Gradescope
- Put your questions about the course and today's lecture on the thread for Lecture 1
- Introduce yourself to two people sitting near you, tell them your name, where you were born, and what you would be famous for, if you were famous.
- The Basics:
- terminology
- assumptions
- proportions
- distribution

Probability vs Statistics

- Discuss which is probability and which is statistics:

Section 1.1.1: Basic vocabulary or terminology

- The act of shuffling a deck and then drawing a card has an element of chance - you won't always get the same card.
- Any activity that has chance associated with it is called an experiment or a random experiment if there is exactly one of several possible outcomes or results, and chance or randomness is involved - that is, each time we perform the action, the outcome will be different, and we don't know exactly which outcome will occur.
- Which of the following are experiments?
- Roll a pair of dice
- Read your textbook
- Buy a raffle ticket

- Draw 52 cards from a standard deck, without replacement.

- An event is a description of the result, and might include several outcomes. For example, rolling a die and having the sum of the rolls be 4 .

Cards

Example set of $\mathbf{5 2}$ playing cards; 13 of each suit: clubs, diamonds, hearts, and spades

	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs		$\begin{gathered} 2+ \\ 4 \end{gathered}$		44 $\dagger \dagger$	$\begin{gathered} 5+4 \\ 4+4 \end{gathered}$	$\begin{array}{ll} 4+ & 4 \\ 4 & 4 \\ 4 & \text { it } \end{array}$	$\begin{aligned} & 14+4 \\ & 4 \\ & \psi+4 \end{aligned}$						
Diamonds										${ }_{+}^{+4}+$			$p=2$
Hearts	4	$\begin{array}{r} 24 \\ 4 \end{array}$	$\begin{aligned} & 3 \\ & v \\ & v \\ & u \end{aligned}$	$\begin{array}{ll} i v & V \\ A & A \end{array}$	$\begin{array}{cc} 5 v & v \\ \Delta & v \end{array}$	$\begin{array}{ll} 5 & V \\ v & V \\ A & A \end{array}$	$\begin{array}{ll} v v \\ v & v \\ n & A_{i}^{\prime} \end{array}$				e^{2}	8	
Spades		$\left[\begin{array}{r} 2 \\ \bullet: \end{array}\right.$		4 * *	$\begin{gathered} 5 \cdot \\ * * \\ \bullet * \end{gathered}$	$\begin{array}{ll} i & \hat{4} \\ \bullet & \hat{4} \\ i & i \end{array}$			$\begin{array}{ll} i & \hat{i} \\ i & \hat{i} \\ i \end{array}$			$\frac{4}{2 i}$	

- If you have a well-shuffled deck of cards, and deal 1 card from the top, what is the chance of it being the queen of hearts? What is the chance that it is a queen (any suit)? What assumptions are you making?
- If you deal 2 cards, what is the chance that at least one of them is a queen? How do these relate to populations and samples?

De Méré's Paradox

- We can think about probability as a numerical measure of uncertainty, and we will define some basic principles for computing these numbers.
- These basic computational principles have been known for a long time, and in fact, gamblers thought about these ideas a lot. Then mathematicians investigated the principles.
- Famous problem: will the probability of at least one six in four throws of a die be equal to prob of at least a double six in 24 throws of a pair of dice.
- Note: single = die, plural = dice:

Origins of probability: de Méré's paradox

Questions that arose from gambling with dice.

Antoine Gombaud, Chevalier de Méré

Pierre de Fermat

The dice players
Georges de La Tour
(17th century)

Terminology

- Experiment: action that results in exactly one of several possible outcomes or results, and chance or randomness is involved - that is, each time we perform the action, the outcome will be different, and we don't know exactly which outcome will occur.
- An event is a collection of outcomes.
- A collection of all possible outcomes of an action is called a sample space or an outcome space. Usually denoted by Ω (sometimes also by S).
- An event is always a subset of Ω. Suppose we call the event A, then we write this as $A \subset \Omega$

Computing probabilities: what do we often assume?

- If you have a well-shuffled deck of cards, and deal 1 card from the top, what is the chance of it being the queen of hearts? What is the chance that it is a queen (any suit)?
- How did you do this? What were your assumptions?
- Say we roll a die. What is Ω ?
- What is the chance that the die shows a multiple of 3 ? What were your assumptions?

Chance of a particular outcome

- We usually think of the chance of a particular outcome (roll a 6, coin lands heads etc) as the number of ways to get that outcome divided by the total possible number of outcomes.

$$
\frac{\# \text { of particular outcomes of interest }}{\text { total \# of outcomes possible }}
$$

. So if A is an event (subset of Ω), then $P(A)=\frac{\#(A)}{\#(\Omega)}, A \subseteq \Omega$

- If an experiment has a finite number of possible equally likely outcomes, then the probability of an event is the proportion of outcomes that are included in the event.

