Stat 88: Probability and Mathematical Statistics in Data Science

https://imgs.xkcd.com/comics/meteorologist.png

Lecture 1: 1/17/2024 Course introduction and the basics

Shobhana Stoyanov

Agenda

- Course resources:
 - Course site: <u>http://stat88.org</u>
 - Announcements and discussions: Ed discussion forum
 - Assignments and grades: <u>Gradescope</u>
- Put your questions about the course and today's lecture on the thread for Lecture 1
- Introduce yourself to two people sitting near you, tell them your name, where you were born, and what you would be famous for, if you were famous.
- The Basics:
 - terminology
 - assumptions
 - proportions
 - distribution

Probability vs Statistics

• Discuss which is probability and which is statistics:

Section 1.1.1: Basic vocabulary or terminology

- The act of shuffling a deck and then drawing a card has an element of chance you won't always get the same card.
- Any activity that has chance associated with it is called an *experiment* or a random experiment if there is exactly one of several possible *outcomes* or results, and chance or randomness is involved - that is, each time we perform the action, the outcome will be different, and we don't know exactly which outcome will occur.
- Which of the following are experiments?
 - Roll a pair of dice
 - Read your textbook
 - Buy a raffle ticket
 - Draw 52 cards from a standard deck, without *replacement*.
- An *event* is a description of the result, and might include several outcomes. For example, rolling a die and having the sum of the rolls be 4.

1310

2,12,22

Cards

	Ace			2		3			4		5		6		7		8	9	10	Jack	Queen	King
Clubs	4	•	2	* +	•r•	∞.	+ + +	•6	:+ +	+ +;	\$ + +	+ + +;	€÷ + +	+ + +;	¦÷ + +	+ + +i	** * * * * *;	9 + + + + + + + + + + + +	**** ****			
Diamonds	4	•	2	•	5	3.	•	•	:+ +	* +;	5 •	* • •	6 * * *	* * *3	₹. • •	i		9 * * * * * * * * * *			()	
Hearts	\$,	2	•	8 .	3	*	8	•	¥ 4;	5 V •	, , , , , , , , , , , , , , , , , , ,	€ ♥ ♥ ▲	¥ ¥ \$3	₹₩ ₩ ₩							
Spades	Å	•	24€	• •	5	3.€	♦	•	‡+ ↓	♦	\$. ♦	♦ •	€. + +	♦ ♦ ♦ ♦ 9	₹ + •	+ + +		9 4 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6				X

Example set of 52 playing cards; 13 of each suit: clubs, diamonds, hearts, and spades

- If you have a well-shuffled deck of cards, and deal 1 card from the top, what is the chance of it being the queen of hearts? What is the chance that it is a queen (any suit)? What assumptions are you making?
- If you deal 2 cards, what is the chance that at least *one* of them is a queen? How do these relate to populations and samples?

De Méré's Paradox

- We can think about probability as a numerical measure of uncertainty, and we will define some basic principles for computing these numbers.
- These basic computational principles have been known for a long time, and in fact, gamblers thought about these ideas a lot. Then mathematicians investigated the principles.
- Famous problem: will the probability of **at least one six** in **four** throws of a die be equal to prob of **at least a double six** in 24 throws of a pair of dice.
- Note: single = die, plural = dice:

Origins of probability: de Méré's paradox

Questions that arose from gambling with dice.

Antoine Gombaud, Chevalier de Méré

Pierre de Fermat

The dice players Georges de La Tour (17th century)

Terminology

• Experiment: action that results in exactly one of several possible outcomes or results, and chance or randomness is involved - that is, each time we perform the action, the outcome will be different, and we don't know exactly which outcome will occur.

• An *event* is a collection of outcomes.

• A collection of all possible outcomes of an action is called a sample space or an outcome space. Usually denoted by Ω (sometimes also by S).

- An event is always a subset of $\Omega.$ Suppose we call the event A, then we write this as $A\subset \Omega$

Computing probabilities: what do we often assume?

• If you have a well-shuffled deck of cards, and deal 1 card from the top, what is the chance of it being the queen of hearts? What is the chance that it is a queen (any suit)?

• How did you do this? What were your assumptions?

• Say we roll a die. What is Ω ?

• What is the chance that the die shows a multiple of 3? What were your assumptions?

Chance of a particular outcome

• We usually think of the chance of a particular outcome (roll a 6, coin lands heads etc) as the number of ways to get that outcome divided by the total possible number of outcomes.

of particular outcomes of interest total # of outcomes possible

• So if A is an event (subset of
$$\Omega$$
), then $P(A) = \frac{\#(A)}{\#(\Omega)}, A \subseteq \Omega$

• If an experiment has a **finite** number of possible *equally likely* outcomes, then the probability of an event is the proportion of outcomes that are included in the event.